Smoke Detection using Local Binary Pattern
نویسندگان
چکیده
To realize quick and robust fire detection with image information of real scenes, smoke is a key feature information in detection methods. Since smoke does not keep stationary shape, it is difficult apply ordinal image processing techniques such as the edge or contour detection directly. Image information of smoke is also affected from its environmental conditions such as illumination changes and background objects. In this study, we adopt Local Binary Patterns (LBP), which is defined as a simple texture operator computed using the center pixel value and its neighborhood pixel values. From its definition, LBP is a robust image descriptor against the illumination change. The adaptive detection for real– scene situations is realized by AdaBoost. Results using with real scene data show that the presented method can provide accurate results against the various conditions of real world situation.
منابع مشابه
Proposing an effective approach for Network security and multimedia documents classically using encryption and watermarking
Local binary pattern (LBP) operators, which measure the local contrast within a pixel's neighborhood, successfully applied to texture analysis, visual inspection, and image retrieval. In this paper, we recommend a semi blind and informed watermarking approach. The watermark has been built from the original image using Weber Law. The approach aims is to present a high robustness and imperceptibi...
متن کاملMandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملDynamic texture based smoke detection using Surfacelet transform and HMT model
To detect smoke regions from video clips, a novel dynamic texture descriptor is proposed with Surfacelet transform and hidden Markov tree (HTM) model. The image sequence is multi-scale decomposed by a pyramid model, and the signals are decomposed to different directions using 3D directional filter banks. Then a 3D HMT model is built for obtained coefficients from Surfacelet transform with both ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کامل